An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations

نویسندگان

  • Xiang Ma
  • Nicholas Zabaras
چکیده

In recent years, there has been a growing interest in analyzing and quantifying the effects of random inputs in the solution of ordinary/partial differential equations. To this end, the spectral stochastic finite element method (SSFEM) is the most popular method due to its fast convergence rate. Recently, the stochastic sparse grid collocation method has emerged as an attractive alternative to SSFEM. It approximates the solution in the stochastic space using Lagrange polynomial interpolation. The collocation method requires only repetitive calls to an existing deterministic solver, similar to the Monte Carlo method. However, both the SSFEM and current sparse grid collocation methods utilize global polynomials in the stochastic space. Thus when there are steep gradients or finite discontinuities in the stochastic space, these methods converge very slowly or even fail to converge. In this work, we develop an adaptive sparse grid collocation strategy using piecewise multi-linear hierarchical basis functions. Hierarchical surplus is used as an error indicator to automatically detect the discontinuity region in the stochastic space and adaptively refine the collocation points in this region. Numerical examples, especially for problems related to long-term integration and stochastic discontinuity, are presented. Comparisons with Monte Carlo and multi-element based random domain decomposition methods are also given to show the efficiency and accuracy of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms for the Solution of Stochastic Partial Differential Equations

Title of dissertation: FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS Christopher W. Miller, Doctor of Philosophy, 2012 Dissertation directed by: Professor Howard Elman Department of Computer Science Institute for Advanced Computer Studies We explore the performance of several algorithms for the solution of stochastic partial differential equations including the s...

متن کامل

A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty

The numerical solution of optimization problems governed by partial differential equations (PDEs) with random coefficients is computationally challenging because of the large number of deterministic PDE solves required at each optimization iteration. This paper introduces an efficient algorithm for solving such problems based on a combination of adaptive sparse-grid collocation for the discreti...

متن کامل

A Recursive Sparse Grid Collocation Method for Differential Equations with White Noise

We consider a sparse grid collocation method in conjunction with a time discretization of the differential equations for computing expectations of functionals of solutions to differential equations perturbed by time-dependent white noise. We first analyze the error of Smolyak’s sparse grid collocation used to evaluate expectations of functionals of solutions to stochastic differential equations...

متن کامل

Sparse grid collocation schemes for stochastic natural convection problems

In recent years, there has been an interest in analyzing and quantifying the effects of random inputs in the solution of partial differential equations that describe thermal and fluid flow problems. Spectral stochastic methods and Monte-Carlo based sampling methods are two approaches that have been used to analyze these problems. As the complexity of the problem or the number of random variable...

متن کامل

A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data

This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009